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ABSTRACT

Generating control tables for Interlocking system in Railways is a com-

plex task. This is generally done by the vendor, who manufactures the hard-

ware for Indian Railways. These control tables are verified for correctness

by another vendor. The problem that exists with this current method is the

process followed to generate these control tables remains a black box (i.e.)

unknown. The contribution to be made through this project is to explore

this unknown process and come up with a system, that will give the correct

control tables for a given layout of Railway section. For the verification of

consistent routes in control table, modeling of signaling system for the given

section has been done using Symbolic Model Verification (SMV ) language

and verify the SMV description using NuSMV tool.



திட்டப்பணிச் சுருக்கம

இருப்புப்பபாததை  பபபாக்குவரத்தில் பின்னிப்பூட்டல்  அதமைப்பிற்கு  கட்டுப்பபாடு

அட்டவதணைகதளை  உருவபாக்குவது  சிக்கலபான  பணி.  இந்தைப்  பணிதய,

பபபாதுவபாக,  இந்திய இருப்புபபாததை  பபபாக்குவரத்து துதறைக்கு  வன்பபபாருதளை

தையபாரித்து  தைரும  விற்பதனயபாளைர்கபளை  பசெய்வபார்கள.  இவ்விற்பதனயபாளைர்

உருவபாக்கித்  தைரும  கட்டுப்பபாடு  அட்டவதணைகதளை  செரி  பபார்க்க  மைற்றுபமைபாரு

விற்பதனயபாளைரிடம  அளிக்கப்படுகின்றைது.  இந்தைக்  கட்டுப்பபாடு

அட்டவதணைகதளை  உருவபாக்கவும,  செரி  பபார்க்கவும  தகயபாளைப்படும

பசெயல்முதறை  ஒரு  பகளவிக்குறியபாக  இருப்பது  தைபான்  பிரச்செதன.  இந்தை

மைதறைந்திருக்கும  பசெயல்முதறைதய  அறியவும,  செரியபான  கட்டுப்பபாடு

அட்டவதணைதய  உருவபாக்கவும,  எடுக்கப்படும  இமமுயற்சிபய,  இந்தைத்

திட்டத்தின்  வபாயிலபாக  அளிக்கப்படவிருக்கும  பங்களிப்பபாகும.  கட்டுப்பபாடு

அட்டவதணைகளில் முரணைற்றை தைடங்களின் கலதவகதளை செரி பபார்க்க செமிக்தஞ

அதமைப்பின்  மைபாதிரிதய     ( )Symbolic Model Verifcation SMV
பமைபாழிதயக்  பகபாண்டு பசெய்யப்பட்டுளளைது.  இதைன் பின்னர்  -NuSMV தயக்

பகபாண்டு,  SMV விளைக்கத்ததை செரி பபார்க்கப்பட்டுளளைது.
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CHAPTER 1

BACKGROUND AND MOTIVATION

When a train enters or leaves a railway station, it is important to be sure

that it does not derail and does not collide with another train. Therefore, rules

have to be made for when a train can enter and leave a station. Like other

railway enterprises, Indian Railways uses interlocking systems for ensuring

that the safety rules are respected. Such systems are deployed for enforcing

these rules on the physical objects of the stations. For instance, the track

segments must be aligned correctly in position to make the train to move

either straight or turn.

1.1 INTRODUCTION

A railway station or a railway section is represented as a layout diagram.

This layout diagram consists of track segments connected with one another,

along with signals, points and level crossings. Signals convey the informa-

tion regarding operation of train or the track on which the train is set to move,

to the driver. Points are the intersection of two track segments. It is used to

turn a moving train from main line to loop line. Level Crossings are the con-

trol gates that co-ordinate the movement between road transport and railway

without collision.

Verification tools can be classified into interactive and automatic tools.

Theorem provers, at the current state of art, are not fully automatic for their

usual tasks. They are driven through user interaction. As a consequence, ex-

perts are needed that are familiar with logic and the particular proof system

that underlies the prover. The proof task turns out to be very time and cost

intensive if it can be completed at all. Model checking tools, in contrast, do
1
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not provide a proof of correctness but rather execute an exhaustive search for

errors in the state space of a model. It is an exhaustive test over all possibil-

ities. This search can be done fully automatically. As a result, the user gets

an answer that the checked requirement is either satisfied in the model or vi-

olated and, in this case, an example shows in which situation the violation

may happen.

Many contributions have been made from researchers across the globe

with respect to Model checking of Railways interlocking system. But their

work is aligned to the Railways System in their country. As the Railways

signaling system varies from country to country, it cannot be generalized for

all countries. In India, there has been no publications in this field. This is due

to the complexity of model checking and unpublished research work for this

system. This project was suggested by Ex. Director/Indian Railways Prof.

(Dr.) V Purnachandra Rao.

The objectives of this project are listed below:

1. Formal representation of railway section recognizable by a program.

2. Generation of control table entries for the railway section.

3. Verification of control table entries for safety conditions.

1.2 ORGANIZATION OF REPORT

This report is organized into discussion of Indian Railway’s signaling

system and interlocking system basics, various model checking techniques,

different approaches to verify interlocking system, basics of NuSMV and

about implementation of this project before concluding.

We explain the signaling system and interlocking system of Indian Rail-

ways in detail through chapter 2. In chapter 3, model checking is explained
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in detail. A detailed analysis of different techniques handled to verify differ-

ent countries’ interlocking system is given in chapter 4. NuSMV is explained

in detail in chapters 5 respectively. In chapter 6, implementation details with

case study is given and we conclude in chapter 7.



CHAPTER 2

RAILWAYS SIGNALLING & INTERLOCKING SYSTEM

In this chapter, the concepts involved in signalling and interlocking of

Indian Railways are to be discussed in detail. The different types of signals

and its meaning are discussed before having a look at interlocking concepts

and its types.

2.1 SIGNALLING CONCEPTS

Railway vehicles move on steel rail track and are provided with flanged

steel wheels. The rolling of steel wheel on steel rail has the least friction and

it is, therefore, one of the most efficient means of locomotion.

2.1.1 Control over movement of trains

Running of flanged vehicles on the steel track has its own inherent prob-

lems unlike the road, sea or air transport where the movement is not con-

fined to a particular track. Since the vehicles are constrained to move in a

fixed railway track, they cannot be steered away as in the case of other trans-

ports. They are required to follow one another in the same direction on the

length of track, as otherwise for every vehicle separate parallel paths are to

be provided. This is not practical. If vehicles are expected from the opposite

direction another set of diversion track is required to be provided either for

overtaking vehicles moving in the same direction or for crossing the vehicles

from the opposite direction. Railway locomotion, therefore, though more

efficient, brings in problems of “control over movement of trains”.

Basically, two types of controls could be catered for. If two separate

tracks are provided for trains running in opposite directions, then one set of

4
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control can be provided to space the movement of trains running in the same

direction so that adequate “interval” is available between two consecutive

trains. On the other hand, if a single track is used for movement of trains in

both directions, then another set of control is required to prevent a train in

the opposite direction from coming on the same track when a train is already

occupying it.

2.1.2 Time Interval Method

Let us take the first case of spacing of trains in the same direction. The

spacing should be such that if a train stops, then, the following train driver

should be able to notice it and apply brake to his train so that it stops short of

the preceding train. The most important aspect is bringing to a stop from the

speed at which a train is running. Where the speeds and weights are low, it is

not difficult for a following train to stop short of the train ahead, which has

stopped. This is how tramway operate even today, as the speed and weight are

low and a tram can be stopped from its running speed without colliding with

a tram in front. With higher speeds and heavier loads, as in the case of train,

the distance required to stop a train is longer, and at this longer distance, the

driver cannot definitely decide whether a train in front has actually stopped

or not. This is the case when trains follow one another in quick succession.

In actual practice, where interval between trains is longer, a following train

does not see the earlier train, and the driver has to continuously guess as to

where the earlier train will be. If all trains run at the same speed and are

required to stop at the same place for the same duration, a certain amount

of control can be exercised by having a definite time lag between the trains

from one stopping place to another. This time lag should be such that the

train, which has a stop, is able to reach the next stop within this time. Thus

by having a time interval between trains, a certain amount of control can be
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achieved. But, in the case of Railway, this is not practicable. A better method

of control is called the “Space Interval Method” is adopted.

2.1.3 Space Interval Method

In this method of “Control over movement”, the length of track is di-

vided into sections called “Blocks”. The entry of a train into the block is

controlled in such a way that only when it is free, a train can be allowed to

enter it. This means that between two consecutive trains, there is a definite

space interval.

This space interval or block is controlled at the entry. This controlling

point should know whether the train, which had entered this space, vacated

it so that another following train can be sent. Since the length of a block is

beyond the normal visual range, another controlling point is set at the end

of the block. This point can know whether the train has arrived and advise

the controlling point at the entry. So, with the two controlling points and

intercommunication, it is possible to control the entry of a train into a block

only when it is vacant.

The information about the condition of this block is given by the exit

point to the entry point, and the entry point transmits this information to the

driver of a train. The driver of the approaching train must be able to know

whether the next block is not clear, he should stop and wait. Here is where

“signal” comes in to picture.

2.1.4 Signals

A “Signal”, therefore, is a medium to convey a particular pre-determined

meaning in non-verbal form. Various methods are used to convey the mean-

ing by “signals” in a non-verbal form as are used by Scouts, Policemen, road

signs, Navy and Air Traffic Control, etc., which convey a definite informa-
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tion. The chart given in Figure 2.1, gives the various forms that could be

adopted.

Figure 2.1 Various Forms of Signals

2.1.5 Block Working

As explained earlier, the space interval system uses the block working

wherein the entry of train onto the block section is jointly controlled by the

entry and exist points of the block section. The driver is authorized to proceed

into a section by the signal controlling the entry to the section. This working

could be a manual block system or automatic block system. In any type be-

fore the train could be allowed to enter a section “PERMISSION” is required

to be obtained from the exit end to the effect that the section is “CLEAR”

of trains and the train could be permitted. Different systems of working for

getting this “PERMISSION TO APPROACH” have been evolved on Indian

Railways and are classified as “System of Working”.
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2.2 FIXED SIGNALS, ASPECTS & INDICATIONS

In signals, a mention was made about the use of different types of visual

and audible signals, for controlling the movement of trains in all cases. No

exceptions are allowed by approved special Instructions in the following:

(a) Fixed signals

(b) Hand signals

(c) Detonating signals

(d) Flare signals

The definition of “Fixed Signals” as given in the General Rules is “a

signal of fixed location indicating a condition affecting the movement of a

train and includes a semaphore arm or disc or fixed light for use by day and

a fixed light for use by night”.

Semaphore signals used on the Railways are in the form of a rectangular

or fish tailed arm fixed to a vertical post. The arm is kept horizontal to the post

to be easily distinguishable. By this arrangement the arm can be seen from a

long distance on a clear day. Whenever the signal is required to convey some

information the arm can altogether be removed from the view of the driver

by making the arm to disappear in a slot provided on the post, or

(a) The arm can be made to assume a mid-way position below horizontal, or

(b) To assume a mid-way position above horizontal, or

(c) To assume a vertical position parallel to the extended line of the post.

Method (a) was adopted in the early days and subsequently given up as

the absence of arm due to some reason other than its entering the slot in the

post conveyed wrong information. Methods (b) and (c) above could be on

the Right hand side or left hand side of a Quadrant as shown below in Figure
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2.2. Fixed Signals can operate on any one of the four quadrants of a circle

as shown. Since ‘Left hand’ rule is followed in India, the “lower quadrant”

and “Upper quadrant” of the left hand side is utilized in Indian Railways.

Based on this principle, signals are also generally located on the left side of

the track.

Figure 2.2 Use Of Quadrant

It can be seen in the Figure 2.2 that an arm in a lower quadrant can

have only two positions, one at horizontal position and the other at midway

position on the left-hand side. In Upper Quadrant, three positions can be

obtained, i.e. one at horizontal position, one at midway position and the 3rd

at vertical position in parallel with the extended line of post. Hence, we have

two systems of signalling, one called “Lower Quadrant Signalling” and the

other called “Upper Quadrant Signalling”.

2.2.1 Two aspect Lower Quadrant Signalling

(a) Stop Signal The semaphore arm of the stop signal is square ended,

painted red with white bar parallel to the square end in front and painted
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white with black bar in rear. As explained, a lower quadrant signal can show

only two different positions. One is horizontal and the other lowered to mid-

way position. They are called “aspects” of the signals. The movement of the

signal arm in lower quadrant is generally adopted by countries where there is

no snowfall or other external conditions which can result in the arm remain-

ing lowered without being operated. The arm in the horizontal position will

convey an aspect “stop” indicating “Stop dead”. The arm lowered to midway

position in the lower quadrant will convey an aspect “proceed”, indicating

Proceed. Semaphore arm can be seen during day and so can convey informa-

tion during daytime. At night the arm will not be visible. Hence, to convey

information during night, fixed light signals are used. Right from the early

days, red lights were used to denote “Stop” and green lights were used for

“Proceed”. Red light should, therefore, be exhibited when the arm is hori-

zontal and green light when the arm is inclined midway. A semaphore signal

is a combined integrated unit with an arm and light. The horizontal position

of the arm during daytime is considered as the “ON” aspect and the inclined

position is the “OFF” aspect of the signal. The corresponding light red &

green during night time are ‘ON’ and ‘OFF’ aspects respectively. The ‘ON’

aspect of a signal is also referred to as the most restrictive aspect.

(b) Warner Signal Two-aspect stop signal as explained above is the mini-

mum required to safely space the trains. This is adequate for low speeds and

low density of traffic. Safety depends on the driver seeing the signal in time

under all conditions. This imposes an enormous strain on the driver who has

to be constantly on the lookout, to pick up the signals. Any mistake or loss of

attention can lead to serious consequences. Otherwise drivers will play safe

by running at lower speeds so that he can stop at the signal even if he sees



11

it at the last minute. With such low speeds, the time of occupying the block

sections by the trains will increase, thereby reducing the number of trains per

day that can be run between the block stations.

One method of overcoming this problem will be to give information

in advance, or “WARNING” to the driver about the presence of stop signal

ahead and the aspect displayed by the stop signal. This can be achieved in

the form of another signal. This signal can precisely inform the driver that he

is approaching a stop signal and also that he is required to stop or proceed.

The signal which gives such warning about the condition of the stop signal

ahead is called a “WARNER SIGNAL”.

Since the driver is not required to stop at the warner signal, as it is only

giving an advance warning about the presence of the stop signal ahead, this

signal has to be different from the stop signal. The day aspect, therefore, is

characterized by a fish tailed arm instead of a square ended arm. This is also

a two aspect lower quadrant signal.

Since the warner signal is not a stop signal and is exhibiting red light

when ‘ON this should be distinguishable from a stop signal during night.

This is done by mounting the arm at a lower level in the post and providing

a separate additional fixed green light at 1.5 to 2.0 meters above the arm.

This combination of green light above a red light distinguishes a signal as a

warner signal in the ‘ON’ position. When the signal is lowered to midway

position, the red light changes to green and the driver sees two green lights

one above the other. Two precise informations are given to the driver by the

Warner Signal. When the arm is horizontal during day and showing of a green

light and red light below during night time indicates to the driver that he can

proceed, but must be prepared to stop at the next stop signal. Similarly, the

lowering of arm during day and showing of two green lights one below the
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other during night indicates that he can proceed and can expect all the stop

signals ahead of warner for that direction are OFF and he can run through

main line.

A warner signal must not be capable of being taken ‘OFF’ for any line

other than that over which the highest speed is permitted (i.e. main line) and

not until all the relevant signals have assumed ‘OFF’ aspect. The last of the

stop signals will be the one controlling the entry of the train in the block

section ahead. Even if any one of the stop signals ahead is ‘ON’ the warner

cannot display ‘OFF’ aspect.

Under certain circumstances a semaphore warner signal is required to

be placed on the same post of a stop signal. In such cases, the warner signal

is placed below the stop signal, and the fixed green light is dispensed with.

The combination of two arms (stop and warner) on the same post gives

the driver three indications in the 2-aspect lower quadrant signalling. When

both the stop signal and the warner signal arms are at horizontal position and

the showing of two red light one below the other gives an indication to the

driver to ‘stop dead’ at this signal. The lowering of the stop signal above

the warner or showing of a green light above a red light indicates that he

can proceed past the signal with caution and be prepared to stop at the next

stop signal. A third condition exists when both the arms are lowered to give

two green lights one below the other. This indicates to the driver that he

can proceed and can expect all the stop signals for that direction are ‘OFF’

and that the block section ahead is also clear. It is also made mechanically

impossible to lower only the warner signal when the stop signal above it is

‘ON’. In this way showing of green light below a red light is eliminated.

From the point of view of the driver, therefore, the ‘ON’ aspect of warner

does not signify positively anything about the signals ahead whereas if such
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information is available, he can confidently approach the signal ahead. A

system of warning about the condition of each signal by a signal in rear is,

therefore, very much necessary. This leads to the concept of more than 2

aspects called “MULTIPLE ASPECT SIGNALING”.

2.2.2 Multiple Aspect Upper Quadrant Signalling

(a) Stop Signal It has been mentioned in previous para that the semaphore

arm can be made to assume a midway position above horizontal and also

another position in parallel with the extended line of the post on the left hand

upper quadrant. In this way, it is possible to obtain more than 2 aspects in the

upper quadrant region and hence, it is called “Multiple Aspect” (more than

2 aspects) “Upper Quadrant” signalling as distinct from “two aspect Lower

Quadrant Signalling” mentioned in previous paras.

The raising of the semaphore arm to “45◦ above horizontal” in the left

hand upper quadrant region will convey an aspect “Caution” indicating “Pro-

ceed with caution and be prepared to stop at the next stop signal”. The night

aspect of the mid-way position by showing of a yellow light. The raising of

the arm to 90◦ above horizontal in parallel with the extended line of post in a

vertical position will convey an aspect “Clear” indicating “Proceed” and the

next stop signal is also ‘OFF’. The corresponding night aspect is the showing

of a green light.

(b) Distant Signal As discussed in the case of 2-aspect signalling when

a driver approaches the first stop signal he should be warned about its con-

dition. Therefore, a signal similar to the warner signal in the 2-aspect sig-

nalling is also a necessity in multiple aspect upper quadrant signalling. This

pre-warning signal is called a “DISTANT” signal. The term ‘Distant’ is used

here, as this is the farthest signal from the station on the approach side. The



14

semaphore arm will have 3 positions - horizontal, 45◦ above horizontal and

90◦ above horizontal. The arm is fishtailed similar to lower quadrant warner

signal. The front side facing the train is colored yellow with a black bar

parallel to the end and the backside is colored white with a black bar.

The three positions of a multiple aspect upper quadrant both of a stop

signal and a distant signal are horizontal for the ‘ON’ position, raised to 45◦

above horizontal and raised to 90◦ above horizontal are the ‘OFF’ positions.

So far we have discussed two types of signals i.e. Lower Quadrant 2-

aspect and Multiple Aspect Upper Quadrant. The warner/distant signals are

not stop signals and, therefore, “Permit” the approaching driver to pass the

signal in the ‘ON’ position. Hence they are called “Permissive Signals”.

The stop signals in the 2 aspect and multiple aspect cannot be passed by

the approaching driver in the ‘ON’ position unless and until he is specially

authorized. Hence, these signals are called “Absolute Signals”.

The above two types of semaphore signals are 2-aspect lower quadrant

and 3-aspect upper quadrant whether permissive signals or absolute signals.

The lights exhibited in the nighttime are lighted by “Kerosene Wick Lamps”

or by electric lamps and they are lit only during the night time. In some areas,

where the visibility of arm is very poor due to snow or fog, the night aspects

are required to be lit in the day time also. The lighting of the lamps is left to

the operating staff.

Multiple Aspect Color Light Signals Instead of having an arm by day and

light by night it is preferable to have only lights as signals for both day and

night and such signals are called color light signals. These are mainly used

in busy suburban sections and main trunk routes, as these require electric

power to operate them. Use of color light signals is essential in the electrified
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sections.

At a block station it is obligatory to provide certain number of signals for

controlling the movements of trains. There we require some signals to deal

with the trains approaching the station and some to deal with departure of

trains from the station. When more than one stop signals are used a difficulty

to identify them from each other will arise. Hence it is necessary to give

some name to these signals.

2.3 DESTINATION OF SIGNALS

At a block station it is obligatory to provide certain number of signals for

controlling the movements of trains. There we require some signals to deal

with the trains approaching the station and some to deal with departure of

trains from the station. When more than one stop signals are used a difficulty

to identify them from each other will arise. Hence it is necessary to give

some name to these signals.

2.3.1 Signals for Reception

Signals, which are governing the approach and entry of trains into a

station, are:

(a) Permissive signals A ‘WARNER’ in case of 2-Aspect signalling can be

placed below the first stop signal or below the last stop signal or can be on a

post by itself with fixed green light above. It is to warn the driver that he is

approaching a stop signal or to warn him about the condition of block section

ahead. In multiple aspect signalling a “DISTANT” signal is provided to in-

dicate the driver about the condition of the stop signal ahead. If the sectional

speed is 120 kmph or above, two “DISTANT” signals shall be provided. In

such cases, these signals are called ‘DISTANT’ and ‘INNER DISTANT’ re-
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spectively.

(b) Stop signals Minimum one permissive and one stop signal is sufficient

for trains approaching a station. When stop signal is taken ‘OFF’ it permits

the train to enter the station, this is called “HOME” signal of the station. At a

station where two stop signals are provided in the approach, the first one shall

be called ‘OUTER’ and the next shall be “HOME”. In some cases where the

distance between the home signal and the reception lines of the station is far

away, one more stop signal may be provided, as one home signal will not be

sufficient to facilitate the reception. So a stop signal provided between home

and the reception lines shall be called a “ROUTING HOME”.

2.3.2 Signals for Departure of Trains

At the departure end of the station, the stop signals controlling the move-

ment of trains leaving the station are:

(a) Starter signal Where the departure of trains is controlled by only one

stop signal, it is called starter signal and is the last stop signal of the station.

If two or more converging lines are there, the starter shall be placed outside

all connections on the line to which it refers. Where advanced starter is also

provided, the starter referring to any line is placed so as to protect the facing

point or fouling mark and shall not be less than 400m in advance of the Home

signal.

(b) Advanced Starter Where departure of trains is controlled by more than

one stop signal, the outer most starter signal shall be the last stop signal of

the station and is called “Advanced Starter”. Unless approved under special

instructions an “Advanced Starter” shall be placed outside all connections
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on the line to which it applies. It shall be placed at not less than 180m in the

case of two aspect and 120m in multiple aspect signalling from the outermost

point on single line and out side all connection. This distance shall be reck-

oned from the starter on double line. On special nominated sections where

frequent shunting involving main line takes place the “Advanced Starter” sig-

nal may be placed at a distance of full train length beyond the trailing point

and the track between trailing point and the advance starter shall be track

circuited. Where an advanced starter is provided, the starter referring to any

line shall be placed so as to protect the first facing point or fouling mark; and

shall not be less than 400m in advance of home signal.

(c) Intermediate/Routing Starter Intermediate Starter is provided be-

tween starter & advanced starter where necessary, and is placed in rear of

the point, which it protects.

We have seen the aspects and indications of an individual signal. The

following aspect sequence charts give us the various combinations of signals,

their aspect and indications conveyed to the driver of an approaching train.

(Using light aspects)

Warner Outer Home Indication
R R R Stop at outer signal

R G G
Enter the station. Stop at starter of concerned
line if ‘ON’

G G G
Run through via main line all signals ahead are
‘OFF’

Table 2.1 Approaching signals used in 2-aspect signalling
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Distant Home Indication
Y R Stop at home signal
YY Y Enter on loop line. Stop at starter if ‘ON’.
G Y Enter on main line. Stop at starter.
G G Run through via main line

Table 2.2 Approaching signals used in MAUQ/MACL

Distant Inner Distant Home Indication
YY Y R Stop at home
YY YY Y Enter on loop line. Stop at starter if ‘ON’
G YY Y Enter on main line. Stop at starter.
G G G Run through via main line

Table 2.3 Using two distant signals in approach (MACL)

Starter
Advanced
Starter

Indication

R R Stand in rear of starter
G R Shunt upto advanced starter
G G Proceed line is clear

Table 2.4 Departure signals in 2-aspect signalling

Starter
Advanced
Starter

Indication

R R Stand in rear of starter
Y R Shunt upto advanced starter
Y/G G Proceed line is clear

Table 2.5 Departure signals in M.A signalling

2.4 SUBSIDIARY SIGNALS

In the previous chapters we have seen the signals authorizing the drivers

to enter the station from a block section by the use of reception signals; and



19

enter the block section from the station by the use of departure signals. These

signals were, therefore, being used for reception and despatch of running

trains. As per definition a “Running train” is a train which has started under

an authority to proceed and has not completed its journey whereas “a train”

is an engine with or without vehicles attached or self propelled vehicle with

or without a trailer which cannot be readily lifted off the track. The signals,

which control the movement of trains within the station section, are to be

differentiated and convey different indication to the driver. These signals are

(a) Shunt signals and (b) Calling on signals and are called “SUBSIDIARY

SIGNALS”.

2.4.1 Shunt Signals

(a) Shunt signals authorize movement only at such slow speeds as to be able

to stop short of any obstruction and control shunting movements.

(b) Shunt signals can be placed on a separate post by itself close to the

ground or can be placed below a stop signal other than the first and last

stop signal of a station.

(c) More than one shunt signal may be placed on the same post in which

case the top-most signal shall apply to the extreme left hand line and the

second shunt signal from the top shall apply to the next line from the left

and so on.

(d) Shunt signal when taken ‘OFF’ authorities the driver to draw ahead with

caution even though the stop signal, if any, above it is at ’ON’ position,

and

(e) The shunt signal shall be either
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(i) Disc type shunt signal.

(ii) Position light shunt signal.

(f) Under special instructions, a shunt signal may be a miniature arm.

(g) When a shunt signal is placed below a stop signal, it shall show no light

in the “ON” position.

2.5 INTERLOCKING CONCEPTS

In order to ensure that the signalling system never provides unsafe (con-

flicting) signals and the points are not set for more than one train that might

end up proceeding on to the same section of track and hence suffering a col-

lision, various schemes have been developed to coordinate the settings of the

points and the signals within the region controlled by a signalbox or signal

cabin.

Mechanically operated interlocking: The most prevalent systems today

(2003) are still mechanical interlocking schemes that coordinate the positions

of the levers controlling the points with the signals governing that section of

track and connected branches, loops, or sidings.

For instance, in one common scheme, a key that allows setting the points

for a route has to be obtained from the block instrument, and as long as

the key is removed the instrument cannot be set to provide Line Clear for a

conflicting route. The wires that operate signals, and the rods that control

points, are all interconnected in the lever frames at the signal cabins so that

they are literally ’interlocked’ - the position of one lever or key physically

obstructs the movements of other levers and keys which control points or

signals that can be set in conflicting ways.
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Manually operated interlocking: This is a form of mechanical interlock-

ing as well, but relies on the signalman to move about from one set of points

and signals to another carrying with him the keys used to operate them. At

small stations and on less busy branch lines various forms of manually op-

erated mechanical interlocking are still [11/03] widespread. At points con-

trolling catch sidings in hilly areas, often the interlocking is manual where

the driver has to use a key provided by the stationmaster or signalman of the

last station before the siding - the key is inserted into the interlock box which

notifies the signal cabin and the points are then set for the main line and the

signal is pulled off, giving the train authority to proceed. (This system is

common in many hilly areas, although busier lines with catch sidings are be-

ing provided with automatically operating delayed signals where the points

are controlled by a timer and are set to the main line only after the train has

halted for the prescribed period of time.)

A common system in use was Sequential Key Interlocking, which

saved on the installation of point rodding and instead relied on the signalman

walking over with a key to lock or unlock points. As an example, consider a

station with a main line and a loop line. To receive a train on the main line,

a key is inserted into the signal frame in the cabin or platform, which allows

the Outer and Home signals of the station to be pulled off.

In order to receive a train on the loop line instead, the key is used as

before to pull off the Outer signal, but the Home is kept at danger. Instead,

when the train has stopped at the Home signal the key is removed and taken

to the facing points for the loop. The same key unlocks the points so they can

be set for the loop; it also releases another key which has to be taken back

and inserted in the signal frame at the platform to pull off the Home signal to

let the train advance on to the loop.
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The mechanism was such that only one of these two keys could be re-

leased at once; the second key did not allow the operation of the Outer signal,

and it had to be taken back to the facing points of the loop in order to release

the first key.

Electrically operated interlocking: In the more advanced electrical or

electronic interlocking schemes, the points and signals are worked from one

integrated mechanism in a signal cabin which features a display of the entire

track layout with indications of sections that are occupied, free, set for re-

ception or dispatch, etc. The interlocking is accomplished not by mechanical

devices but by electrical circuitry - relays and switches in older electrical or

electro pneumatic systems, and computerized circuits in the newer electronic

systems.

Panel Interlocking(PI) is the system used in most medium-sized sta-

tions on IR. In this, the points and signals are worked by individual switches

that control them. Route Relay Interlocking(RRI) is the system used in

large and busy stations that have to handle high volumes of train movements.

In this, an entire route through the station can be selected and all the asso-

ciated points and signals along the route can be set at once by a switch for

receiving, holding, blocking, or dispatching trains.

The description of the possible routes that can be set, and the corre-

sponding dispositions of points and signals are found in the locking table

and selection table for a station. The locking table lists the signals and

points controlled; the levers at signal boxes (or control panels at control cen-

tres) which operate various signals and points; which signals and points are

locked (and in what position) when other signals are pulled off or points set;

which track circuits are clear or occupied; etc.
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The requirement for having signalling system, different possible sig-

nalling systems with their underlying concepts and the indication of signals

based on their location was discussed in this chapter. Also, the concepts of

interlocking system and its types were discussed in detail.



CHAPTER 3

BASICS OF MODEL CHECKING

In the previous chapter we discussed about the various signalling con-

cepts and the different techniques involved in interlocking system. This chap-

ter deals about the importance and purpose of doing model checking before

building any system either hardware or software after designing its proto-

type. There are also few examples which show the problems of not using

model checking. The flow, architecture and process of model checking are

also discussed.

Our reliance on the functioning of ICT systems (Information and Com-

munication Technology) is growing rapidly. These systems are becoming

more and more complex and are massively encroaching on daily life via the

Internet and all kinds of embedded systems such as smart cards, hand-held

computers, mobile phones, and high-end television sets. Services like elec-

tronic banking and teleshopping have become reality. The daily cash flow via

the Internet is about 1012 million US dollars. Roughly 20% of the product

development costs of modern transportation devices such as cars, high-speed

trains, and airplanes is devoted to information processing systems.

ICT systems are universal and omnipresent. They control the stock ex-

change market, form the heart of telephone switches, are crucial to Internet

technology, and are vital for several kinds of medical systems. Our reliance

on embedded systems makes their reliable operation of large social impor-

tance. Besides offering a good performance in terms like response times and

processing capacity, the absence of annoying errors is one of the major qual-

ity indications.

24
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It is all about money. We are annoyed when our mobile phone malfunc-

tions, or when our video recorder reacts unexpectedly and wrongly to our

issued commands. These software and hardware errors do not threaten our

lives, but may have substantial financial consequences for the manufacturer.

Correct ICT systems are essential for the survival of a company. Dramatic

examples are known. The bug in Intels Pentium II floating-point division unit

in the early nineties caused a loss of about 475 million US dollars to replace

faulty processors, and severely damaged Intels reputation as a reliable chip

manufacturer. The software error in a baggage handling system postponed

the opening of Denvers airport for 9 months, at a loss of 1.1 million US dollar

per day. Twenty-four hours of failure of the worldwide online ticket reserva-

tion system of a large airplane company will cause its bankruptcy because of

missed orders.

Figure 3.1 Ariane-5 explosion during launch

It is all about safety: errors can be catastrophic too. The fatal defects in

the control software of the Ariane-5 missile (Figure 3.1), the Mars Pathfinder,
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and the airplanes of the Airbus family led to headlines in newspapers all over

the world and are notorious by now. Similar software is used for the pro-

cess control of safety-critical systems such as chemical plants, nuclear power

plants, traffic control and alert systems, and storm surge barriers. Clearly,

bugs in such software can have disastrous consequences. For example, a

software flaw in the control part of the radiation therapy machine Therac-25

caused the death of six cancer patients between 1985 and 1987 as they were

exposed to an overdose of radiation.

The increasing reliance of critical applications on information process-

ing leads us to state:

The reliability of ICT systems is a key

issue in the system design process.

The magnitude of ICT systems, as well as their complexity, grows apace.

ICT systems are no longer standalone, but are typically embedded in a larger

context, connecting and interacting with several other components and sys-

tems. They thus become much more vulnerable to errors the number of de-

fects grows exponentially with the number of interacting system components.

In particular, phenomena such as concurrency and nondeterminism that are

central to modeling interacting systems turn out to be very hard to han-

dle with standard techniques. Their growing complexity, together with the

pressure to drastically reduce system development time (“time-to-market”),

makes the delivery of low-defect ICT systems an enormously challenging

and complex activity.

Hardware and Software Verification

System verification techniques are being applied to the design of ICT

systems in a more reliable way. Briefly, system verification is used to estab-
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system
specification

Design Process properties

product or
prototype Verification

bug(s) found

no bugs found

Figure 3.2 Schematic view of a posteriori system verification

lish that the design or product under consideration possesses certain proper-

ties. The properties to be validated can be quite elementary, e.g., a system

should never be able to reach a situation in which no progress can be made (a

deadlock scenario), and are mostly obtained from the systems specification.

This specification prescribes what the system has to do and what not, and

thus constitutes the basis for any verification activity. A defect is found once

the system does not fulfill one of the specifications properties. The system is

considered to be “correct” whenever it satisfies all properties obtained from

its specification. So correctness is always relative to a specification, and is

not an absolute property of a system. A schematic view of verification is

depicted in Figure 3.2.

Software verification: Peer reviewing and testing are the major software

verification techniques used in practice.
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A peer review amounts to a software inspection carried out by a team of

software engineers that preferably has not been involved in the development

of the software under review. The uncompilable code is not executed, but

analyzed completely statically. Empirical studies indicate that peer review

provides an effective technique that catches between 31% and 93% of the

defects with a median around 60%. While mostly applied in a rather ad hoc

manner, more dedicated types of peer review procedures, e.g., those that are

focused at specific error-detection goals, are even more effective. Despite its

almost complete manual nature, peer review is thus a rather useful technique.

It is therefore not surprising that some form of peer review is used in almost

80% of all software engineering projects. Due to its static nature, experience

has shown that subtle errors such as concurrency and algorithm defects are

hard to catch using peer review.

Software testing constitutes a significant part of any software engineer-

ing project. Between 30% and 50% of the total software project costs are

devoted to testing. As opposed to peer review, which analyzes code statically

without executing it, testing is a dynamic technique that actually runs the

software. Testing takes the piece of software under consideration and pro-

vides its compiled code with inputs, called tests. Correctness is thus deter-

mined by forcing the software to traverse a set of execution paths, sequences

of code statements representing a run of the software. Based on the observa-

tions during test execution, the actual output of the software is compared to

the output as documented in the system specification. Although test gener-

ation and test execution can partly be automated, the comparison is usually

performed by human beings. The main advantage of testing is that it can be

applied to all sorts of software, ranging from application software (e.g., e-

business software) to compilers and operating systems. As exhaustive testing
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of all execution paths is practically infeasible; in practice only a small sub-

set of these paths is treated. Testing can thus never be complete. That is to

say, testing can only show the presence of errors, not their absence. Another

problem with testing is to determine when to stop. Practically, it is hard, and

mostly impossible, to indicate the intensity of testing to reach a certain defect

density - the fraction of defects per number of uncommented code lines.

Studies have provided evidence that peer review and testing catch differ-

ent classes of defects at different stages in the development cycle. They are

therefore often used together. To increase the reliability of software, these

software verification approaches are complemented with software process

improvement techniques, structured design and specification methods (such

as the Unified Modeling Language), and the use of version and configuration

management control systems. Formal techniques are used, in one form or

another, in about 10% to 15% of all software projects.

Figure 3.3 Software lifecycle and error introduction, detection, and repair
costs
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Catching software errors: the sooner the better. It is of great impor-

tance to locate software bugs. The slogan is: the sooner the better. The

costs of repairing a software flaw during maintenance are roughly 500 times

higher than a fix in an early design phase (see Figure 3.3). System verification

should thus take place early stage in the design process.

About 50% of all defects are introduced during programming, the phase

in which actual coding takes place. Whereas just 15% of all errors are de-

tected in the initial design stages, most errors are found during testing. At

the start of unit testing, which is oriented to discovering defects in the indi-

vidual software modules that make up the system, a defect density of about

20 defects per 1000 lines of (uncommented) code is typical. This has been

reduced to about 6 defects per 1000 code lines at the start of system testing,

where a collection of such modules that constitutes a real product is tested.

On launching a new software release, the typical accepted software defect

density is about one defect per 1000 lines of code lines.

Errors are typically concentrated in a few software modules about half

of the modules are defect free, and about 80% of the defects arise in a small

fraction (about 20%) of the modules and often occur when interfacing mod-

ules. The repair of errors that are detected prior to testing can be done rather

economically. The repair cost significantly increases from about $1000 (per

error repair) in unit testing to a maximum of about $12,500 when the defect

is demonstrated during system operation only. It is of vital importance to

seek techniques that find defects as early as possible in the software design

process: the costs to repair them are substantially lower, and their influence

on the rest of the design is less substantial.
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Hardware verification: Preventing errors in hardware design is vital.

Hardware is subject to high fabrication costs; fixing defects after delivery to

customers is difficult, and quality expectations are high. Whereas software

defects can be repaired by providing users with patches or updates nowa-

days users even tend to anticipate and accept this hardware bug fixes after

delivery to customers are very difficult and mostly require refabrication and

redistribution. This has immense economic consequences. The replacement

of the faulty Pentium II processors caused Intel a loss of about $475 million.

Moore’s law the number of logical gates in a circuit doubles every 18 months

has proven to be true in practice and is a major obstacle to producing correct

hardware. Empirical studies have indicated that more than 50% of all ASICs

(Application-Specific Integrated Circuits) do not work properly after initial

design and fabrication. It is not surprising that chip manufacturers invest a

lot in getting their designs right. Hardware verification is a well-established

part of the design process. The design effort in a typical hardware design

amounts to only 27% of the total time spent on the chip; the rest is devoted

to error detection and prevention.

Hardware verification techniques. Emulation, simulation, and structural

analysis are the major techniques used in hardware verification.

Structural analysis comprises several specific techniques such as syn-

thesis, timing analysis, and equivalence checking.

Emulation is a kind of testing. A reconfigurable generic hardware sys-

tem (the emulator) is configured such that it behaves like the circuit under

consideration and is then extensively tested. As with software testing, em-

ulation amounts to providing a set of stimuli to the circuit and comparing

the generated output with the expected output as laid down in the chip spec-

ification. To fully test the circuit, all possible input combinations in every
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possible system state should be examined. This is impractical and the num-

ber of tests needs to be reduced significantly, yielding potential undiscovered

errors.

With simulation, a model of the circuit at hand is constructed and sim-

ulated. Models are typically provided using hardware description languages

such as Verilog or VHDL that are both standardized by IEEE. Based on stim-

uli, execution paths of the chip model are examined using a simulator. These

stimuli may be provided by a user, or by automated means such as a ran-

dom generator. A mismatch between the simulator’s output and the output

described in the specification determines the presence of errors. Simulation

is like testing, but is applied to models. It suffers from the same limitations,

though: the number of scenarios to be checked in a model to get full confi-

dence goes beyond any reasonable subset of scenarios that can be examined

in practice.

Simulation is the most popular hardware verification technique and is

used in various design stages, e.g., at register-transfer level, gate and tran-

sistor level. Besides these error detection techniques, hardware testing is

needed to find fabrication faults resulting from layout defects in the fabrica-

tion process.

3.1 MODEL CHECKING

In software and hardware design of complex systems, more time and ef-

fort are spent on verification than on construction. Techniques are sought to

reduce and ease the verification efforts while increasing their coverage. For-

mal methods offer a large potential to obtain an early integration of verifica-

tion in the design process, to provide more effective verification techniques,

and to reduce the verification time.

Let us first briefly discuss the role of formal methods. To put it in
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a nutshell, formal methods can be considered as “the applied mathematics

for modeling and analyzing ICT systems”. Their aim is to establish sys-

tem correctness with mathematical rigor. Their great potential has led to an

increasing use by engineers of formal methods for the verification of com-

plex software and hardware systems. Besides, formal methods are one of

the “highly recommended” verification techniques for software development

of safety-critical systems according to, e.g., the best practices standard of

the IEC (International Electrotechnical Commission) and standards of the

ESA (European Space Agency). The resulting report of an investigation by

the FAA (Federal Aviation Authority) and NASA (National Aeronautics and

Space Administration) about the use of formal methods concludes that

Formal methods should be part of the education of every computer sci-

entist and software engineer, just as the appropriate branch of applied

maths is a necessary part of the education of all other engineers.

During the last two decades, research in formal methods has led to the

development of some very promising verification techniques that facilitate

the early detection of defects. These techniques are accompanied by pow-

erful software tools that can be used to automate various verification steps.

Investigations have shown that formal verification procedures would have re-

vealed the exposed defects in, e.g., the Ariane-5 missile, Mars Pathfinder,

Intels Pentium II processor, and the Therac-25 therapy radiation machine.

Model-based verification techniques are based on models describing the

possible system behavior in a mathematically precise and unambiguous man-

ner. It turns out that prior to any form of verification the accurate modeling

of systems often leads to the discovery of incompleteness, ambiguities, and

inconsistencies in informal system specifications. Such problems are usu-
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ally only discovered at a much later stage of the design. The system mod-

els are accompanied by algorithms that systematically explore all states of

the system model. This provides the basis for a whole range of verifica-

tion techniques ranging from an exhaustive exploration (model checking) to

experiments with a restrictive set of scenarios in the model (simulation), or

in reality (testing). Due to unremitting improvements of underlying algo-

rithms and data structures, together with the availability of faster computers

and larger computer memories, model-based techniques that a decade ago

only worked for very simple examples are nowadays applicable to realistic

designs. As the starting point of these techniques is a model of the system

under consideration, we have as a given fact that

Any verification using model-based techniques

is only as good as the model of the system.

Model checking is a verification technique that explores all possible sys-

tem states in a brute-force manner. Similar to a computer chess program that

checks possible moves, a model checker, the software tool that performs the

model checking, examines all possible system scenarios in a systematic man-

ner. In this way, it can be shown that a given system model truly satisfies a

certain property. It is a real challenge to examine the largest possible state

spaces that can be treated with current means, i.e., processors and memories.

State-of-the-art model checkers can handle state spaces of about 108 to 109

states with explicit state-space enumeration. Using clever algorithms and tai-

lored data structures, larger state spaces (1020 up to even 10476 states) can

be handled for specific problems. Even the subtle errors that remain undis-

covered using emulation, testing and simulation can potentially be revealed

using model checking.
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Figure 3.4 Schematic view of the model-checking approach

Typical properties that can be checked using model checking are of a

qualitative nature: Is the generated result OK?, Can the system reach a dead-

lock situation, e.g., when two concurrent programs are waiting for each other

and thus halting the entire system? But also timing properties can be checked:

Can a deadlock occur within 1 hour after a system reset?, or, Is a response

always received within 8 minutes? Model checking requires a precise and

unambiguous statement of the properties to be examined. As with making

an accurate system model, this step often leads to the discovery of several

ambiguities and inconsistencies in the informal documentation. For instance,
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the formalization of all system properties for a subset of the ISDN user part

protocol revealed that 55%(!) of the original, informal system requirements

were inconsistent.

The system model is usually automatically generated from a model de-

scription that is specified in some appropriate dialect of programming lan-

guages like C or Java or hardware description languages such as Verilog

or VHDL. Note that the property specification prescribes what the system

should do, and what it should not do, whereas the model description ad-

dresses how the system behaves. The model checker examines all rele-

vant system states to check whether they satisfy the desired property. If a

state is encountered that violates the property under consideration, the model

checker provides a counterexample that indicates how the model could reach

the undesired state. The counterexample describes an execution path that

leads from the initial system state to a state that violates the property be-

ing verified. With the help of a simulator, the user can replay the violating

scenario, in this way obtaining useful debugging information, and adapt the

model (or the property) accordingly (see Figure 3.4).

Model checking has been successfully applied to several ICT systems

and their applications. For instance, deadlocks have been detected in online

airline reservation systems, modern e-commerce protocols have been veri-

fied, and several studies of international IEEE standards for in-house com-

munication of domestic appliances have led to significant improvements of

the system specifications. Five previously undiscovered errors were identi-

fied in an execution module of the Deep Space 1 spacecraft controller, in one

case identifying a major design flaw. A bug identical to one discovered by

model checking escaped testing and caused a deadlock during a flight ex-

periment 96 million km from earth. In the Netherlands, model checking has
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revealed several serious design flaws in the control software of a storm surge

barrier that protects the main port of Rotterdam against flooding.

3.2 CHARACTERISTICS OF MODEL CHECKING

The principles of Model Checking are:

Model checking is an automated technique that,

given a finite-state model of a system and a for-

mal property, systematically checks whether this

property holds for (a given state in) that model.

3.2.1 The Model-Checking Process

In applying model checking to a design the following different phases

can be distinguished:

• Modeling phase:

- model the system under consideration using the model description

language of the model checker at hand;

- as a first sanity check and quick assessment of the model perform

some simulations;

- formalize the property to be checked using the property specification

language.

• Running phase: run the model checker to check the validity of the

property in the system model.

• Analysis phase:

- property satisfied? → check next property (if any);
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- property violated? →

1. analyze generated counterexample by simulation;

2. refine the model, design, or property;

3. repeat the entire procedure.

- out of memory? → try to reduce the model and try again.

In addition to these steps, the entire verification should be planned, ad-

ministered, and organized. This is called verification organization. We dis-

cuss these phases of model checking in somewhat more detail below.

Modeling The prerequisite inputs to model checking are a model of the

system under consideration and a formal characterization of the property to

be checked.

Models of systems describe the behavior of systems in an accurate and

unambiguous way. They are mostly expressed using finite-state automata,

consisting of a finite set of states and a set of transitions. States comprise

information about the current values of variables, the previously executed

statement (e.g., a program counter), and the like. Transitions describe how

the system evolves from one state into another. For realistic systems, finite-

state automata are described using a model description language such as an

appropriate dialect/extension of C, Java, VHDL, or the like.

In order to improve the quality of the model, a simulation prior to the

model checking can take place. Simulation can be used effectively to get rid

of the simpler category of modeling errors. Eliminating these simpler errors

before any form of thorough checking takes place may reduce the costly and

time-consuming verification effort.

To make a rigorous verification possible, properties should be described

in a precise and unambiguous manner. This is typically done using a property
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specification language. We focus in particular on the use of a temporal logic

as a property specification language, a form of modal logic that is appropri-

ate to specify relevant properties of ICT systems. In terms of mathematical

logic, one checks that the system description is a model of a temporal logic

formula. This explains the term “model checking”. Temporal logic is basi-

cally an extension of traditional propositional logic with operators that refer

to the behavior of systems over time. It allows for the specification of a broad

range of relevant system properties such as functional correctness (does the

system do what it is supposed to do?), reachability (is it possible to end up in

a deadlock state?), safety (“something bad never happens”), liveness (“some-

thing good will eventually happen”), fairness (does, under certain conditions,

an event occur repeatedly?), and real-time properties (is the system acting in

time?).

Although the aforementioned steps are often well understood, in prac-

tice it may be a serious problem to judge whether the formalized problem

statement (model + properties) is an adequate description of the actual verifi-

cation problem. This is also known as the validation problem. The complex-

ity of the involved system, as well as the lack of precision of the informal

specification of the systems functionality, may make it hard to answer this

question satisfactorily. Verification and validation should not be confused.

Verification amounts to check that the design satisfies the requirements that

have been identified, i.e., verification is “check that we are building the thing

right”. In validation, it is checked whether the formal model is consistent

with the informal conception of the design, i.e., validation is “check that we

are verifying the right thing”.



40

Running the Model Checker The model checker first has to be initialized

by appropriately setting the various options and directives that may be used to

carry out the exhaustive verification. Subsequently, the actual model check-

ing takes place. This is basically a solely algorithmic approach in which the

validity of the property under consideration is checked in all states of the

system model.

Analyzing the Results There are basically three possible outcomes: the

specified property is either valid in the given model or not, or the model turns

out to be too large to fit within the physical limits of the computer memory.

In case the property is valid, the following property can be checked, or,

in case all properties have been checked, the model is concluded to possess

all desired properties.

Whenever a property is falsified, the negative result may have different

causes. There may be a modeling error, i.e., upon studying the error it is

discovered that the model does not reflect the design of the system. This im-

plies a correction of the model, and verification has to be restarted with the

improved model. This reverification includes the verification of those proper-

ties that were checked before on the erroneous model and whose verification

may be invalidated by the model correction! If the error analysis shows that

there is no undue discrepancy between the design and its model, then either

a design error has been exposed, or a property error has taken place. In case

of a design error, the verification is concluded with a negative result, and

the design (together with its model) has to be improved. It may be the case

that upon studying the exposed error it is discovered that the property does

not reflect the informal requirement that had to be validated. This implies a

modification of the property, and a new verification of the model has to be
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carried out. As the model is not changed, no reverification of properties that

were checked before has to take place. The design is verified if and only if

all properties have been checked with respect to a valid model.

Whenever the model is too large to be handled - state spaces of real-life

systems may be many orders of magnitude larger than what can be stored

by currently available memories - there are various ways to proceed. A pos-

sibility is to apply techniques that try to exploit implicit regularities in the

structure of the model. Examples of these techniques are the representation

of state spaces using symbolic techniques such as binary decision diagrams

or partial order reduction. Alternatively, rigorous abstractions of the com-

plete system model are used. These abstractions should preserve the (non-

)validity of the properties that need to be checked. Often, abstractions can be

obtained that are sufficiently small with respect to a single property. In that

case, different abstractions need to be made for the model at hand. Another

way of dealing with state spaces that are too large is to give up the precision

of the verification result. The probabilistic verification approaches explore

only part of the state space while making a (often negligible) sacrifice in the

verification coverage.

Verification Organization The entire model-checking process should be

well organized, well structured, and well planned. Industrial applications of

model checking have provided evidence that the use of version and config-

uration management is of particular relevance. During the verification pro-

cess, for instance, different model descriptions are made describing different

parts of the system, various versions of the verification models are available

(e.g., due to abstraction), and plenty of verification parameters (e.g., model-

checking options) and results (diagnostic traces, statistics) are available. This
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information needs to be documented and maintained very carefully in order

to manage a practical model-checking process and to allow the reproduction

of the experiments that were carried out.

3.2.2 Strengths and Weaknesses

The strengths of model checking are:

• It is a general verification approach that is applicable to a wide range

of applications such as embedded systems, software engineering, and

hardware design.

• It supports partial verification, i.e., properties can be checked individ-

ually, thus allowing focus on the essential properties first. No complete

requirement specification is needed.

• It is not vulnerable to the likelihood that an error is exposed; this con-

trasts with testing and simulation that are aimed at tracing the most

probable defects.

• It provides diagnostic information in case a property is invalidated; this

is very useful for debugging purposes.

• It is a potential “push-button” technology; the use of model checking

requires neither a high degree of user interaction nor a high degree of

expertise.

• It enjoys a rapidly increasing interest by industry; several hardware

companies have started their in-house verification labs, job offers with

required skills in model checking frequently appear, and commercial

model checkers have become available.



43

• It can be easily integrated in existing development cycles; its learning

curve is not very steep, and empirical studies indicate that it may lead

to shorter development times.

• It has a sound and mathematical underpinning; it is based on theory of

graph algorithms, data structures, and logic.

The weaknesses of model checking are:

• It is mainly appropriate to control-intensive applications and less suited

for data-intensive applications as data typically ranges over infinite do-

mains.

• Its applicability is subject to decidability issues; for infinite-state sys-

tems, or reasoning about abstract data types (which requires undecid-

able or semi-decidable logics), model checking is in general not effec-

tively computable.

• It verifies a system model, and not the actual system (product or pro-

totype) itself; any obtained result is thus as good as the system model.

Complementary techniques, such as testing, are needed to find fabrica-

tion faults (for hardware) or coding errors (for software).

• It checks only stated requirements, i.e., there is no guarantee of com-

pleteness. The validity of properties that are not checked cannot be

judged.

• It suffers from the state-space explosion problem, i.e., the number of

states needed to model the system accurately may easily exceed the

amount of available computer memory. Despite the development of
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several very effective methods to combat this problem, models of real-

istic systems may still be too large to fit in memory.

• Its usage requires some expertise in finding appropriate abstractions

to obtain smaller system models and to state properties in the logical

formalism used.

• It is not guaranteed to yield correct results: as with any tool, a model

checker may contain software defects.

• It does not allow checking generalizations: in general, checking sys-

tems with an arbitrary number of components, or parameterized sys-

tems, cannot be treated. Model checking can, however, suggest results

for arbitrary parameters that may be verified using proof assistants.

We believe that one can never achieve absolute guaranteed correctness

for systems of realistic size. Despite the above limitations we conclude that

Model checking is an effective tech-

nique to expose potential design errors.

Through this chapter we discussed about the importance and purpose of

doing model checking before building any system either hardware or soft-

ware after designing its prototype. We also saw few examples which show

the problems of not using model checking. The flow, architecture and process

of model checking were also discussed.



CHAPTER 4

SURVEY OF RELATED WORKS

In the previous chapter we saw about the importance and different con-

cepts in model checking. This chapter will inform you about the various

related works done by researchers from around the world.

4.1 VERIFICATION IN UK RAILWAYS USING LADDER LOGIC

In the paper titled “Automated Verification of Signalling Principles in

Railway Interlocking Systems” [3], the authors have used ladder logic to de-

velop the software. Many experienced Engineers will try different use cases

to test the software, which are listed in signalling books. The ladder logic

is translated into propositional logic, to check the correctness of signalling

system. The signalling system is represented in ladder logic and the safety

conditions are represented in propositional logic. Thus, the verification of

signalling system is done by verifying the propositional logic.

4.2 CSP TO MODEL AND FDR TO DO MODEL CHECKING

A paper titled “Model Checking Railway Interlocking Systems” [8], the

author uses CSP to model the Railways interlocking system and FDR as

model checking. The formal model of the Signalling Principles is called the

Principle Model. The main aim is to translate the Control Tables into a min-

imal interlocking model, which is then model checked against the Principles

Model.

45
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4.3 INTERFACE TOOL TO CONVERT ASM TO SMV

In another paper titled “Model Checking Support for the ASM High-

Level Language” [1], Abstract State Machines has been successfully con-

verted to SMV, using mathematical formulas to verify. The contribution that

the authors have made is developing an interface between ASM Workbench

and SMV Model Checker. The ASM Workbench is a tool environment,

which includes a type checker and a simulator for ASMs. SMV was chosen

as a typical representative of a class of model checkers, based on transition

systems, and could be easily replaced by any other model checker such as

SVE or VIS.

4.4 MODEL CHECKING USING ASM

Another paper with the title “Modeling Large Railway Interlockings and

Model Checking Small Ones” [9], the authors describe about the results to

date of a feasibility study on model checking to be applied to railway inter-

lockings. The target is a high level description of the interlocking systems,

which is the logical view of its operation. Abstract State Machines(ASM)

has been used to model the semantics of control tables. The reason to use

ASM is that the resulting formal model is easier to read and understand. The

formal model is transformed into NuSMV code by using a tool interface.

4.5 MODELING USING FSM AND CHECKING USING NUSMV

In an interesting paper titled “Automatic generation and verification of

railway interlocking control tables using FSM and NuSMV” [4], the authors

have detailed about the generation and verification of control tables in four

steps.

1. Graphical Signalling Layout Planner
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2. Route Table Generator

3. Control Table Generator

4. Control Table Verifier

This paper provides a complete tool for automating the generation of a safe

Control Tables to be used for Railways.

4.6 MODEL CHECKING SAFETY-CRITICAL SYSTEMS

In the paper titled “Formal Methods in Development and Testing of

Safety-Critical Systems: Railway Interlocking System” [2], the authors

model a real-time system using formal methods in functional specification

and perform verification for safety-critical systems. Safety-critical systems

are often modeled by reactive systems. These reactive systems are used with

applications that have high reliability and safety requirements. This leads to

the rise of precise formal specification.

4.7 VERIFICATION USING COLORED PETRINETS

In another paper with the title “Verification of Railway Interlocking Ta-

bles using Colored Petri Nets”[7], the author models the interlocking tables

using Colored Petri Nets(CPN). The CPN model comprises of two compo-

nents namely Signalling Layout Model and Interlocking Model. ML func-

tions are used on arc inscription in the Interlocking Model. These ML func-

tions can be generated directly from the content of control table using Exten-

sible Stylesheet Language Transformations(XSLT ), thus making CPN model

to be easily reused and allowing other control tables to be built rapidly.
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4.8 MODEL CHECKING USING BOOLEAN LOGIC

In a different paper titled “A logic approach to decision taking in a rail-

way interlocking system using Maple”[5], the authors model the scenario

using Boolean logic and independent from topology of stations. According

to this model, any proposed situation is safe if and only if a certain set of

formulae are consistent. The main procedure analyses the safety of a pro-

posed situation and returns, if they exist, the sections where a collision could

possibly take place. The reason for using Maple is that the code is brief for

it.

4.9 DEVELOPING SAFETY-CRITICAL SYSTEMS USING V-

MODEL

Figure 4.1 Interlocking development lifecycle - the V-Model

In yet another paper titled “The Application of Automation Theory

to Railway Signalization Systems: The Case of Turkish National Railway
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Signalization Project” [6], the authors use V-Model, [Figure 4.1] for the

development of safety critical software. As per the model, the system

specifications are determined. The sub-system and software specifications

are derived from system specifications. Using well-defined software spec-

ifications, the software is designed using formal or semi-formal methods

(such as Automatons and Petri Nets). Then the coding phase which happens,

ladder diagrams or Functional Block Diagrams (FBD) are used.

This chapter gave us a bird’s eye view of related works done by various

researchers. These techniques give us a basic idea of how to build the solution

for model checking Indian Railways.



CHAPTER 5

NuSMV

We saw about the various related works done by researchers across the

globe in previous chapter. Basics of a famous model checking tool named

NuSMV, will be discussed in this chapter. Different types of threading exe-

cution of the program will also be seen in detail.

NuSMV is a symbolic model checker developed as a joint project be-

tween:

• The Embedded Systems Unit in the Center for Information Technology

at FBK-IRST.

• The Model Checking group at Carnegie Mellon University , the Mech-

anized Reasoning Group at University of Genova.

• The Mechanized Reasoning Group at University of Trento.

NuSMV is a reimplementation and extension of SMV, the first model

checker based on BDDs. NuSMV has been designed to be an open archi-

tecture for model checking, which can be reliably used for the verification

of industrial designs, as a core for custom verification tools, as a testbed for

formal verification techniques, and applied to other research areas.

NuSMV2, combines BDD-based model checking component that ex-

ploits the CUDD library developed by Fabio Somenzi at Colorado Univer-

sity and SAT-based model checking component that includes an RBC-based

Bounded Model Checker, which can be connected to the Minisat SAT Solver

and/or to the ZChaff SAT Solver. The University of Genova has contributed

50
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SIM, a state-of-the-art SAT solver used until version 2.5.0, and the RBC

package use in the Bounded Model Checking algorithms.

The input language of NuSMV is designed to allow for the description

of Finite State Machines (FSMs from now on) which range from completely

synchronous to completely asynchronous, and from the detailed to the ab-

stract. One can specify a system as a synchronous Mealy machine, or as

an asynchronous network of nondeterministic processes. The language pro-

vides for modular hierarchical descriptions, and for the definition of reusable

components. Since it is intended to describe finite state machines, the only

data types in the language are finite ones - booleans, scalars and fixed arrays.

Static data types can also be constructed.

The primary purpose of the NuSMV input is to describe the transition

relation of the FSM; this relation describes the valid evolutions of the state of

the FSM. In general, any propositional expression in the propositional calcu-

lus can be used to define the transition relation. This provides a great deal of

flexibility, and at the same time a certain danger of inconsistency. For exam-

ple, the presence of a logical contradiction can result in a deadlock - a state or

states with no successor. This can make some specifications vacuously true,

and makes the description unimplementable. While the model checking pro-

cess can be used to check for deadlocks, it is best to avoid the problem when

possible by using a restricted description style. The NuSMV system supports

this by providing a parallel-assignment syntax. The semantics of assignment

in NuSMV is similar to that of single assignment data flow language. By

checking programs for multiple parallel assignments to the same variable,

circular assignments, and type errors, the interpreter insures that a program

using only the assignment mechanism is implementable. Consequently, this

fragment of the language can be viewed as a description language, or a pro-
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gramming language.

5.1 SYNCHRONOUS SYSTEMS

5.1.1 Single Process Example

Consider the following simple program in the NuSMV language:

MODULE main

VAR

request : boolean;

state : {ready , busy};

ASSIGN

init(state) := ready;

next(state) := case

state = ready & request = TRUE : busy;

TRUE : {ready , busy};

esac;

The space of states of the FSM is determined by the declarations of

the state variables (in the above example request and state). The variable

request is declared to be of (predefined) type boolean. This means that it can

assume the (boolean) values FALSE and TRUE. The variable state is a scalar

variable, which can take the symbolic values ready or busy. The following

assignment sets the initial value of the variable state to ready. The initial

value of request is completely unspecified, i.e. it can be either FALSE or

TRUE. The transition relation of the FSM is expressed by defining the value

of variables in the next state (i.e. after each transition), given the value of

variables in the current states (i.e. before the transition). The case segment

sets the next value of the variable state to the value busy (after the colon) if its

current value is ready and request is TRUE. Otherwise (the TRUE before the

colon) the next value for state can be any in the set ready, busy. The variable

request is not assigned. This means that there are no constraints on its values,
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and thus it can assume any value. request is thus an unconstrained input to

the system.

5.1.2 Binary Counter

The following program illustrates the definition of reusable modules and

expressions. It is a model of a three bit binary counter circuit. The order of

module definitions in the input file is not relevant.

MODULE counter_cell(carry_in)

VAR

value : boolean;

ASSIGN

init(value) := FALSE;

next(value) := value xor carry_in;

DEFINE

carry_out := value & carry_in;

MODULE main

VAR

bit0 : counter_cell(TRUE);

bit1 : counter_cell(bit0.carry_out );

bit2 : counter_cell(bit1.carry_out );

The FSM is defined by instantiating three times the module type

counter cell in the module main, with the names bit0, bit1 and bit2 respec-

tively. The counter cell module has one formal parameter carry in. In the

instance bit0, this parameter is given the actual value TRUE. In the instance

bit1, carry in is given the value of the expression bit0.carry out. This expres-

sion is evaluated in the context of the main module. However, an expression

of the form ‘a.b’ denotes component ‘b’ of module ‘a’, just as if the module

‘a’ were a data structure in a standard programming language. Hence, the

carry in of module bit1 is the carry out of module bit0.
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The keyword ‘DEFINE’ is used to assign the expression value &

carry in to the symbol carry out. A definition can be thought of as a variable

with value (functionally) depending on the current values of other variables.

The same effect could have been obtained as follows (notice that the current

value of the variable is assigned, rather than the next value.):

VAR

carry_out : boolean;

ASSIGN

carry_out := value & carry_in;

Defined symbols do not require introducing a new variable, and hence

do not increase the state space of the FSM. On the other hand, it is not pos-

sible to assign to a defined symbol a value non-deterministically. Another

difference between defined symbols and variables is that while the type of

variables is declared a priori, for definitions this is not the case.

5.2 ASYNCHRONOUS SYSTEMS

The previous examples describe synchronous systems, where the as-

signments statements are taken into account in parallel and simultaneously.

NuSMV allows to model asynchronous systems. It is possible to define a

collection of parallel processes, whose actions are interleaved, following an

asynchronous model of concurrency. This is useful for describing communi-

cation protocols, or asynchronous circuits, or other systems whose actions are

not synchronized (including synchronous circuits with more than one clock

region).

5.2.1 Inverter Ring

The following program represents a ring of three asynchronous inverting

gates.
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MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := FALSE;

next(output) := !input;

MODULE main

VAR

gate1 : process inverter(gate3.output );

gate2 : process inverter(gate1.output );

gate3 : process inverter(gate2.output );

Among all the modules instantiated with the process keyword, one is

non-deterministically chosen, and the assignment statements declared in that

process are executed in parallel. It is implicit that if a given variable is not as-

signed by the process, then its value remains unchanged. Because the choice

of the next process to execute is non-deterministic, this program models the

ring of inverters independently of the speed of the gates.

We remark that the system is not forced to eventually choose a given

process to execute. As a consequence the output of a given gate may remain

constant, regardless of its input. In order to force a given process to execute

infinitely often, we can use a fairness constraint. A fairness constraint re-

stricts the attention of the model checker to only those execution paths along

which a given formula is true infinitely often. Each process has a special

variable called running which is TRUE if and only if that process is currently

executing.

By adding the declaration:

FAIRNESS

running
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to the module inverter, we can effectively force every instance of inverter

to execute infinitely often.

An alternative to using processes to model an asynchronous circuit is to

allow all gates to execute simultaneously, but to allow each gate to choose

non-deterministically to reevaluate its output or to keep the same output

value. Such a model of the inverter ring would look like the following:

MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := FALSE;

next(output) := (! input) union output;

MODULE main

VAR

gate1 : inverter(gate3.output );

gate2 : inverter(gate1.output );

gate3 : inverter(gate2.output );

The union operator (set union) coerces its arguments to singleton sets

as necessary. Thus, the next output of each gate can be either its current

output, or the negation of its current input - each gate can choose non-

deterministically whether to delay or not. As a result, the number of possible

transitions from a given state can be as 2n, where n is the number of gates.

This sometimes (but not always) makes it more expensive to represent the

transition relation. We remark that in this case we cannot force the inverters

to be effectively active infinitely often using a fairness declaration. In fact, a

valid scenario for the synchronous model is the one where all the inverters

are idle and assign to the next output the current value of output.
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5.2.2 Mutual Exclusion

The following program is another example of asynchronous model. It

uses a variable semaphore to implement mutual exclusion between two asyn-

chronous processes. Each process has four states: idle, entering, critical and

exiting. The entering state indicates that the process wants to enter its criti-

cal region. If the variable semaphore is FALSE, it goes to the critical state,

and sets semaphore to TRUE. On exiting its critical region, the process sets

semaphore to FALSE again.

MODULE main

VAR

semaphore : boolean;

proc1 : process user(semaphore );

proc2 : process user(semaphore );

ASSIGN

init(semaphore) := FALSE;

MODULE user(semaphore)

VAR

state : {idle , entering , critical , exiting };

ASSIGN

init(state) := idle;

next(state) :=

case

state = idle : {idle , entering };

state = entering & !semaphore : critical;

state = critical : {critical , exiting };

state = exiting : idle;

TRUE : state;

esac;

next(semaphore) :=

case

state = entering : TRUE;

state = exiting : FALSE;
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TRUE : semaphore;

esac;

FAIRNESS

running

The basics of NuSMV, was discussed in this chapter in detail. Different

types of threading execution of the program was also shown in detail.



CHAPTER 6

IMPLEMENTATION AND CASE STUDY

In previous chapter, we saw about basics and thread execution types in

NuSMV. This chapter will say about the implementation details to generate

verified control table entries for Indian Railways interlocking system.

6.1 INTRODUCTION

In implementing a solution to this problem, understanding the signalling

system of Indian Railways requires much importance. The railway section

or railway station is represented on a layout. The layout consists of track

segments, signals and points. The track segments are segments of track line.

A train moves on a track by occupying and releasing a track segment. Signals

provide the visually encoded information for the train drivers. They specify

information like the speed at which the train must move, track on which the

train has been allocated to move. Points are the intersection points of two

track segments that help a train to change between track lines. A point can

be set as normal or reverse.

Every track segment has an unique ID in a given layout. They may also

have one or more labels to be used for specifying route through the railway

section. Signals have ID to denote them uniquely. Points also have unique

ID to be specified. A route is a sequence of track segments starting from a

signal. It also comprises of details about points concerned with the route, to

be whether normal or reverse.
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6.2 THE RAILWAY SECTION LAYOUT

An example railway section layout has been given in Figure A.1. In

this example, there are two track lines with 17 track segments, 4 points, 14

signals and 9 labels. To give this layout as input, it must be specified using a

formal model such as graph. All the labels and ID are specified as attibutes

of vertices and edges in the graph.

This layout consists of 5 different types of signals namely, Calling on

home, Home, Shunt, Starter and Advanced starter. The 14 signals can be

classified into these types. 1B and 32B are calling on home. 1A and 32A

are home. 9 and 17 are shunt. 3, 2, 6, 30, 31 and 27 are starter. 8 and 25

are advanced starter. The starter signals can be further classified into main

line starter(2 and 31) and loop line starter(3, 6, 30 and 27). A train can move

either towards up or towards down through a railway section. Hence it is

important to provide signalling for both the directions.

The points 50, 52, 63 and 65 allow a train to move from main line to

loop line or vice versa. A main line is the sequence of track segments that

can allow a train to move from one railway section to another. A loop line

is a sequence of track segments that branches from main line. When calling

on home and shunt signal are given to the train driver, he need not stop the

train at the specified track segment. The difference between calling on home

and shunt signal is that the train moving on calling on home signal will have

higher speed than shunt signal. The train following shunt signal will be mov-

ing at a very low speed of 10-20 kmph. Also, for train following shunt signal,

there will be a shunter person to monitor the train movement which is not in

calling on home.
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6.3 FORMAL REPRESENTATION OF THE LAYOUT

The above layout is represented as a bidirectional graph to make it easier

for a program to parse and identify the various aspects of a railway section.

The track segments are represented as vertices using circular nodes. An edge

connects two vertices if a train can move from one track segment to another.

Labels for track segments are represented using elliptical nodes. Signals at a

track segment are represented using rectangular nodes. Point IDs for specific

track segments are represented using triangular nodes. The graph for above

layout is given in Figure A.2.

6.4 REPRESENTATION OF LAYOUT GRAPH AS A FILE

The graph as shown in Figure A.2 is represented as text in a file and

given as input to the program. The program parses the input file and recog-

nizes the graph as adjacency list. Other information such as signals, point

IDs and track labels are also parsed and recognized. The input file consists

of 6 sections, each separated by the keyword ’END’.

The first section consists of neighbouring vertices where the first vertex

on left denotes a track segment on the up side of the railway section with

respect to the other track segment. The second section consists of the impos-

sible path that a train can take at a point. Also, the point ID of a point is given

with this info. The third section consists of signal information and the track

segment at which it is positioned. The fourth section consists of labels given

for track segments. If a label corresponds to platform at which a train must

stop, it is given with an extra information ‘-P’. The fifth section consists of

track info of track segments to which they belong to. The sixth section con-

sists of signal and labels for which the control table needs to be generated.

These denote the route end points as the control table will be generated. This
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input format is given below. The program which generates the control ta-

ble for a given layout is built using Ruby v1.9.3 programming language on

Ubuntu 14.04 LTS OS.

6.5 FUNCTIONS OF MODULES

The input file will be parsed by Interface module to identify the graph as

instances of every item in the layout such as, signals and labels. These objects

will be used by other modules to generate verified control table entries. The

input file name is specified in the file input.rly found in the main folder.

6.5.1 Routes Generator module

The Routes Generator module, makes use of a slightly modified version

of Depth First Search Algorithm to come up with routes. In Home signal,

there can be two types starting from the signal specified. In first type, the

train passes through a railway section and stops at track where there is a label

next to the specified label. In second type, the train stops at the next track of

the track which has the label specified. In Calling on home signal, the train

is operated by the driver manually without any tracks being controlled. In

Starter signal, the train starts from the signal and moves till the track which

has the label specified. In Advanced starter signal, the train starts from the

signal and moves till the track before track which has the label specified. In

Shunt signal, the train starts from the signal and moves to the track before

track which has the label specified.

6.5.2 Control Table Generator module

In Control Table Generator module, the generated routes are analyzed

to find out what must be the status of points for a train to follow the route.

When there is a path that covers two track segments with same point ID, then
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the point is in reverse status. In other case, when there is a path that covers

one track segment with a point ID but the consecutive track segment does not

has the same point ID, then the point is in normal status. For all the points in

the given layout, the track segments that contain the point ID are listed in the

field of paths for different routes.

6.5.3 Consistent Routes Combination Verifier module

The Consistent Routes Combination Verifier module, makes use of

NuSMV model checker to verify if two trains following two different routes,

will have a collision or not. A basic check must be made to ensure that no

two routes should have different status of point which is common between

them. For example, routes 1A-A and 1A-A1 cannot be enabled at same time,

as the point 63 is reverse for 1A-A and normal for 1A-A1. This is called

points conflict.

As the trains following calling on home and shunt signals differ from the

trains following other signals, there is a need to come up with two different

types of models. As an example, lets build models for 1A-A and 9-A, as

shown below in Figures C.1 and C.2. The point 63 is set to reverse by 1A-

A and so the train following 9-A can move till the end. If another route,

for example 32A-C1 is considered, it requires the points 52 and 65 to be in

normal and reverse respectively, making the train following 9-A route, to stop

at 63AT.

This model is represented in NuSMV program as given in appendix sec-

tion. The routes are in the form of modules. They are allowed to move as

synchronous non-deterministic transition model from the main module.
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Safety condition

The condition to be checked for non collision to ensure safety is given

by the below LTL formula, where train 1 is the train following a route and

train 2 is the train following a different route.

G !(train 1.track id = train 2.track id)

Reason for conflict between two routes

The reason for two routes to be conflicting or not, is given below for ev-

ery two combinations of signal types. There are five signal types and distinct

combinations are fifteen. For every combination, the direction of train travel

can be in same direction or opposite direction. This gives a total of thirty

combinations.

1. Home - Home:

1.1 Same direction: The routes cannot conflict as points conflict.

1.2 Opposite direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

2. Home - Calling on home:

2.1 Same direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

2.2 Opposite direction: If the routes have any track segments in com-

mon or if the train following calling on home signal moves forward
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till there is a point of isolation, then they cause collision and hence

they become conflicting routes.

3. Home - Starter:

3.1 Same direction: There can be no collisions as the track segments

are already locked by either home or starter signal. So there can

be no conflicting routes in this combination.

3.2 Opposite direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

4. Home - Advanced starter:

4.1 Same direction: As there are no track segments in common, col-

lision cannot happen. Hence there can be no conflicting routes in

this combination.

4.2 Opposite direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

5. Home - Shunt:

5.1 Same direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

5.2 Opposite direction: If the routes have any track segments in com-

mon or if the train following shunt signal moves forward till there

is a point of isolation, then they cause collision and hence they

become conflicting routes.
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6. Calling on home - Calling on home:

6.1 Same direction: As all the routes combination end up in points

conflict, there can be no collision. Hence all the routes combina-

tion are not conflicting.

6.2 Opposite direction: As the trains can proceed further ahead of the

given path, till point of isolation is reached, it causes collision and

become conflicting routes.

7. Calling on home - Starter:

7.1 Same direction: As the trains can proceed further ahead of the

given path, till point of isolation is reached, it causes collision and

become conflicting routes.

7.2 Opposite direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

8. Calling on home - Advanced starter:

8.1 Same direction: As there is a huge gap for a train following ad-

vanced starter and calling on home, there cannot be collision be-

tween trains. Hence there are no conflicting routes in this combi-

nation.

8.2 Opposite direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

9. Calling on home - Shunt:
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9.1 Same direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

9.2 Opposite direction: If the train moves forward till there is a point

of isolation, then they cause collision and hence they become con-

flicting routes.

10. Starter - Starter:

10.1 Same direction: As all the route combinations have points con-

flict, there are no conflicting routes in this combination.

10.2 Opposite direction: As there are no track segments in common,

there is no collision between trains. Hence there are no conflict-

ing routes in this combination.

11. Starter - Advanced starter:

11.1 Same direction: As there are no track segments in common, there

are no conflicting routes in this combination.

11.2 Opposite direction: As there are no track segments in common,

there are no conflicting routes in this combination.

12. Starter - Shunt:

12.1 Same direction: If the routes have any track segments in common

or if the train following shunt signal moves forward till there is

a point of isolation, then they cause collision and hence they be-

come conflicting routes.
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12.2 Opposite direction: If the routes have any track segments in com-

mon, then they cause collision and hence they become conflicting

routes.

13. Advanced starter - Advanced starter:

13.1 Same direction: There cannot be any combinations between same

routes, there are no conflicting routes in this combination.

13.2 Opposite direction: As there are no track segments in common,

there are no conflicting routes in this combination.

14. Advanced starter - Shunt:

14.1 Same direction: As there is a huge gap between the trains fol-

lowing advanced starter & shunt signals and the train following

shunt signal is being controlled by a shunter & operates at very

low speed, there cannot be collision. Hence there are no conflict-

ing routes in this combination.

14.2 Opposite direction: As the train following shunt signal must not

make the driver confused with advanced starter signal too, these

combinations are not allowed. Hence all these route combina-

tions are conflicting.

15. Shunt - Shunt:

15.1 Same direction: As the route combinations have point conflict,

there can be no conflicting routes.

15.2 Opposite direction: As the trains following shunt signals are op-

erated at low speed and controlled by shunter, only those routes
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which end at track segments with same label, cause collision.

Hence they are only conflicting routes.

The final result is presented in a PDF as tabular format generated using

LATEXsoftware.

6.6 PERFORMANCE EVALUATION

Performance of this system is a measure of likeliness of the already gen-

erated control table entries being generated. On comparing with the sample

data, it is found that the system is able to give 100% performance.

We saw how generation of verified control table entries was done using

Ruby programming language and NuSMV model checker. The functionality

of every module in the system was also explained clearly.



CHAPTER 7

CONCLUSION AND FUTURE WORK

This work provides us the control table which is verified using model

checking technique(LTL). The choice of Ruby as programming language has

helped to execute terminal commands to run NuSMV programs and com-

pile the LATEXfile inside the program. Also, the programming language

was easy to build and trace for bugs. The least required version of Ruby

to run this is 1.9.3. The website for this project can be found in the link:

http://modelchecking.github.io/identify conflicting routes.

As future work, NuSMV can be used to model an actual railway station

working with the generated control table as input and verify if the generated

control table has any flaws or completely safe. Also, the signalling principles

can be specified using a formal language which can be further utilized to

check properties on its working mechanism.
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APPENDIX A

RAILWAY SECTION LAYOUT AND GRAPH
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Figure A.1 Sample layout of a railway section

C1T 25T 1T 50BT 52BT 02T 63BT 65BT 32T 8T C32T

50BT 01T 63AT

52AT 52AT 65AT

J H

A A1

B

C C1

K L

1B
Calling on home

down

1A
Home
down

25
Advanced starter

up

9
Shunt
down

30
Starter

up

3
Starter
down

31
Starter

up

2
Starter
down

27
Starter

up

6
Starter
down

17
Shunt

up

8
Advanced starter

down

32B
Calling on home

up

32A
Home

up

50

52

63

65

50

52

63

65

Figure A.2 Graph representation of sample railway section layout
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APPENDIX B

INPUT

1 C1T 25T

2 25T 1T

3 1T 50BT

4 50BT 50AT

5 50BT 52BT

6 52BT 52AT

7 52BT 02T

8 02T 63BT

9 50AT 01T

10 01T 63AT

11 63AT 63BT

12 63BT 65BT

13 52AT 03T

14 03T 65AT

15 65AT 65BT

16 65BT 32T

17 32T 8T

18 8T C32T

19 END

20 52BT 50BT 50AT 50

21 02T 52BT 52AT 52

22 02T 63BT 63AT 63

23 63BT 65BT 65AT 65

24 END

25 C1T (1B down calling_on_home)

26 C1T (1A down home)

27 1T (25 up advanced_starter)

28 1T (9 down shunt)

29 01T (30 up starter)

30 02T (31 up starter)
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31 03T (27 up starter)

32 01T (3 down starter)

33 02T (2 down starter)

34 03T (6 down starter)

35 32T (17 up shunt)

36 32T (8 down advanced_starter)

37 C32T (32A up home)

38 C32T (32B up calling_on_home)

39 END

40 C1T J

41 1T H

42 01T A A1 -P

43 02T B

44 03T C C1 -P

45 32T K

46 C32T L

47 END

48 T1 C1T 25T 1T 50BT 52BT 02T 63BT 65BT 32T 8T C32T

49 T2 50AT 01T 63AT

50 T3 52AT 03T 65AT

51 END

52 1A A A1 B C C1

53 1B A B C

54 2 K

55 3 K

56 6 K

57 8 L

58 9 A B C

59 17 A B C

60 25 J

61 27 H

62 30 H

63 31 H

64 32A A A1 B C C1
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65 32B A B C

code/input/sample layout.txt



APPENDIX C

MODEL OF ROUTE

C1Tstart 25T 1T 50BT

50AT

50BT

01T 63AT

63BT

63AT

63BT 32T

Figure C.1 Model of route 1A-A through the Railway Section

50BTstart

50AT

50BTstart

01T

63BT

63AT

63 must be reverse
63BT 32T 8T C32T

Figure C.2 Model of route 9-A through the Railway Section
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APPENDIX D

NuSMV PROGRAM FOR MODEL

1 -- *****

2 -- EVERY ROUTE IS A MODULE. A TRAIN WILL MOVE IN A ROUTE.

3 -- *****

4

5 MODULE route_1A_A ()

6 VAR

7 track_id : {"25T", "1T", "50BT", "50AT", "01T", "63AT", "63

BT", "65BT", "32T"};

8 ASSIGN

9 init(track_id) := "25T";

10 next(track_id) := case

11 track_id = "25T" : {"25T", "1T"};

12 track_id = "1T" : {"1T", "50BT"};

13 track_id = "50BT" : {"50BT", "50AT"};

14 track_id = "50AT" : {"50AT", "01T"};

15 track_id = "01T" : {"01T", "63AT"};

16 track_id = "63AT" : {"63AT", "63BT"};

17 track_id = "63BT" : {"63BT", "65BT"};

18 track_id = "65BT" : {"65BT", "32T"};

19 TRUE : track_id;

20 esac;

21

22 MODULE route_9_A(point_63 , point_65)

23 VAR

24 track_id : {"50BT", "50AT", "01T", "63AT", "63BT", "65BT",

"32T", "8T", "C32T"};

25 ASSIGN

26 init(track_id) := "50BT";

27 next(track_id) := case

28 track_id = "50BT" : {"50BT", "50AT"};

76



77

29 track_id = "50AT" : {"50AT", "01T"};

30 track_id = "01T" : {"01T", "63AT"};

31 track_id = "63AT" & !point_63 : {"63AT"

, "63BT"};

32 track_id = "63BT" : {"63BT", "65BT"};

33 track_id = "65BT" : {"65BT", "32T"};

34 track_id = "32T" : {"32T", "8T"};

35 track_id = "8T" : {"8T", "C32T"};

36 TRUE : track_id;

37 esac;

38

39 MODULE main()

40 VAR

41 point_63 : boolean;

42 point_65 : boolean;

43 train_1A_A : route_1A_A ();

44 train_9_A : route_9_A(point_63 , point_65);

45 ASSIGN

46 init(point_63) := FALSE;

47 init(point_65) := TRUE;

48 next(point_63) := point_63;

49 next(point_65) := point_65;

50

51 LTLSPEC

52 G !( train_1A_A.track_id = train_9_A.track_id);

code/output/sample layout txt/NuSMV/model 1A–A 9–A.smv



APPENDIX E

JOURNAL DETAILS

A paper titled “Identifying Conflicting Routes in Control Table of Indian

Railways Interlocking System Using NuSMV” was submitted to the Interna-

tional Journal of Computer Applications(0975 - 8887) Volume 146 - No.*,

July 2016.
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